Abstract

Spontaneous activity of vascular smooth muscle is present in small arteries and some venous tissues like the hepatic portal vein. Whereas the ability to generate rhythmic membrane potential changes is expressed in a high number of primary oscillators, the generation of physiological tone and phasic activity requires synchronization of specialized pacemaker activity (Interstitial Cajal-like cells) by intercellular propagation and regeneration of excitation or a strong coupling mechanism of smooth muscle cells. The aim of this study was to deduce oscillator coupling by analyzing the spatiotemporal homogeneity of calcium oscillations within a native tissue preparation. Portal vein tissue was loaded with a calcium-sensitive dye (Fluo-3). By combining confocal microscopy and computation of spatial auto- and cross-correlation of the calcium signals, temporal and spatial coupling between cells was characterized. Spontaneous oscillations of calcium signals were measured at different predefined regions of interest. Cross-correlation analysis of these signals revealed that their damping was very similar in all directions of the investigated z-plane. In single experiments, improved cell-to-cell coupling was seen when noradrenaline (1-10 μM) was added to the bath-solution. With the chosen parameters of frame refresh, the velocity of signal propagation was faster than the maximum detectable velocity, but it could be estimated to exceed 0.1 mm/s. Correlative Network Analysis is a new and very useful tool to determine the functional coupling parameters of quasi-homogenous biological networks and their temporal changes. The action and significance of pharmacological modulators can be well studied on cellular and functional aspects with this newly introduced technique in biological sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.