Abstract

Mutations in the gene MAPT encoding tau, a microtubules-associated protein, cause a subtype of familial neurodegenerative disorder, known as frontotemporal lobar degeneration tauopathy (FTLD-Tau), which presents with dementia and is characterized by atrophy in the frontal and temporal lobes of the brain. Although induced pluripotent stem cell (iPSC) technology has facilitated the investigation of phenotypes of FTLD-Tau patient neuronal cells in vitro, it remains unclear how FTLD-Tau patient neurons degenerate. Here, we established neuronal models of FTLD-Tau by Neurogenin2-induced direct neuronal differentiation from FTLD-Tau patient iPSCs. We found that FTLD-Tau neurons, either with an intronic MAPT mutation or with an exonic mutation, developed accumulation and extracellular release of misfolded tau followed by neuronal death, which we confirmed by correction of the intronic mutation with CRISPR/Cas9. FTLD-Tau neurons showed dysregulation of the augmentation of Ca2+ transients evoked by electrical stimulation. Chemogenetic or pharmacological control of neuronal activity-relevant Ca2+ influx by the introduction of designer receptors exclusively activated by designer drugs (DREADDs) or by the treatment with glutamate receptor blockers attenuated misfolded tau accumulation and neuronal death. These data suggest that neuronal activity may regulate neurodegeneration in tauopathy. This FTLD-Tau model provides mechanistic insights into tauopathy pathogenesis and potential avenues for treatments.

Highlights

  • Introduction ofdesigner receptors exclusively activated by designer drugs (DREADDs) and analysis of misfolded tau after chemical stimulation for DREADDs.The designer receptor exclusively activated by designer drug (DREADD) technique was used to control neuronal activity

  • There was a difference in molecular weight shifting of misfolded tau between FTLD-Tau neurons with the intronic MAPT mutation and with the exonic mutation (Fig. 2(f)), suggesting that conformation of misfolded tau might not be uniform in the denaturing condition

  • Our findings suggest that neurodegeneration in FTLD-Tau involves misfolded tau and it is modulated by neuronal activity

Read more

Summary

Introduction

DREADDs and analysis of misfolded tau after chemical stimulation for DREADDs. The designer receptor exclusively activated by designer drug (DREADD) technique was used to control neuronal activity. We introduced a human M4 muscarinic DREADD (M4D) into iPSCs using a tol[2] vector[38]. A tol[2] vector containing M4D under control of the CAG promoter and hygromycine resistance gene was generated from the pT2AL200R175-CAGGS-EGFP vector backbone following removal of the EGFP gene[38]. The generated vector was co-transfected along with a vector encoding transposase into the Ngn2-introduced iPSCs using lipofectamin LTX. After the generated iPSCs were differentiated into neurons with doxycycline and neural medium for 8 days, the pharmacologically inert, designer drug clozapine-N-oxide (CNO) of 100 nM was added to culture medium to stimulate DREADD. On Day[14], western blot analysis and dot blot analysis were performed

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.