Abstract

On the basis of first principle density functional theory, we have studied the stability, electronic structure, and hydrogen storage capacity of a monolayer calcium doped graphane (CHCa). The stability of CHCa was further investigated using the ab initio molecular dynamics study. The binding energy of Ca on graphane sheet was found to be higher than its bulk cohesive energy, which indicates the stability of CHCa. It was observed that with a doping concentration of 11.11% of Ca on graphane sheet, a reasonably good H2 storage capacity of 6 wt. % could be attained. The adsorption energies of H2 were found to be 0.1 eV, within the range of practical H2 storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.