Abstract

Until recently we held the simple view that voltage-gated calcium channels consisted of an alpha1 subunit, usually associated with auxiliary beta subunits and alpha(2)delta subunits and that skeletal muscle calcium channels were also associated with a gamma subunit. However, as discussed here, there is now evidence that the auxiliary subunits may also perform other roles unrelated to voltage-gated calcium entry. In the past students were taught the simplistic view that second messenger signaling to voltage-gated calcium channels involved mainly phosphorylation of L-type calcium channels, Ca(2+)-dependent inactivation via calmodulin, and direct G-protein-mediated inhibition of the neuronal N and P/Q channels. However, it is now clear that there are many other means of modulating calcium channel activity, including receptor-mediated internalization, proteolytic cleavage, phosphorylation of beta subunits, and interaction of calcium channels with other proteins, including enzymes masquerading as scaffold proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.