Abstract

Calcium aluminate (CaAl), arginine-glycine-aspartic acid-modified CaAl, and beta-tricalcium phosphate (TCP) implants were studied in a rat calvarial critical-sized defect model. The rates of newly formed bone and osteointegration were measured using 3 different methods: radiography, micro-computed tomography, and histologic examination. After 4 weeks, there was no new bone formed and no signs of osteointegration into the skull bone in the CaAl or arginine-glycine-aspartic acid-modified CaAl groups, and thick fibrous capsules were visible around the whole circumference of the implants in both groups. In the beta-TCP group, neovascularization of the implant was observed, which is consistent with the early phase of new bone formation. In addition, in the beta-TCP group, signs of implant integration into the host tissue were evident at 4 weeks. There was no soft tissue reaction around the beta-TCP implant. These observations suggest that more specific adhesion peptides may be needed to activate the bioinert CaAl implant and promote bone formation in the craniofacial skeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.