Abstract

Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P < 0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P < 0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two- to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by approximately 50% (P < 0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P < 0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.