Abstract

BackgroundComplementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment. However, the molecular mechanisms underneath the anti-cancer effect, if any, of these medicines have still remained unexplored. To this end we attempted to evaluate the efficacy of calcarea carbonica, a homeopathic medicine, as an anti-cancer agent and to delineate the detail molecular mechanism(s) underlying calcerea carbonica-induced tumor regression.MethodsTo investigate and delineate the underlying mechanisms of calcarea carbonica-induced tumor regression, Trypan blue dye-exclusion test, flow cytometric, Western blot and reverse transcriptase-PCR techniques were employed. Further, siRNA transfections and inhibitor studies were used to validate the involvement of p53 pathway in calcarea carbonica-induced apoptosis in cancer cells.ResultsInterestingly, although calcarea carbonica administration to Ehrlich’s ascites carcinoma (EAC)- and Sarcoma-180 (S-180)-bearing Swiss albino mice resulted in 30-35% tumor cell apoptosis, it failed to induce any significant cell death in ex vivo conditions. These results prompted us to examine whether calcarea carbonica employs the immuno-modulatory circuit in asserting its anti-tumor effects. Calcarea carbonica prevented tumor-induced loss of effector T cell repertoire, reversed type-2 cytokine bias and attenuated tumor-induced inhibition of T cell proliferation in tumor-bearing host. To confirm the role of immune system in calcarea carbonica-induced cancer cell death, a battery of cancer cells were co-cultured with calcarea carbonica-primed T cells. Our results indicated a "two-step" mechanism of the induction of apoptosis in tumor cells by calcarea carbonica i.e., (1) activation of the immune system of the host; and (2) induction of cancer cell apoptosis via immuno-modulatory circuit in p53-dependent manner by down-regulating Bcl-2:Bax ratio. Bax up-regulation resulted in mitochondrial transmembrane potential loss and cytochrome c release followed by activation of caspase cascade. Knocking out of p53 by RNA-interference inhibited calcarea carbonica-induced apoptosis thereby confirming the contribution of p53.ConclusionThese observations delineate the significance of immuno-modulatory circuit during calcarea carbonica-mediated tumor apoptosis. The molecular mechanism identified may serve as a platform for involving calcarea carbonica into immunotherapeutic strategies for effective tumor regression.

Highlights

  • Complementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment

  • Our results indicated that in comparison to untreated T cells, calcarea carbonica-activated T cells induced cancer cell apoptosis in p53-dependent manner by down-regulating B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) ratio that culminated at the activation of mitochondrial death cascade

  • Calcarea carbonica inhibited tumor growth and increased survival rates of tumor-bearing mice To identify the optimal strength of calcarea carbonica, Ehrlich’s ascites carcinoma (EAC)-bearing mice were administered with different strengths of drug (1C, 6C, 12C, 30C and 200C) for 27 days and anti-tumor efficacy was determined by examining any change in viable EAC cell number (Figure 1A)

Read more

Summary

Introduction

Complementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment. Chemotherapy plays an important role in the treatment of breast cancer, the high percentage of failures after initial responses and the adverse toxic side effects [2] of chemotherapeutic drugs highlight the necessity of the identification of novel agents that can suppress growth of human breast cancers and are still relatively safe. In this regard, the use of complementary and alternative medicine (CAM) including homeopathic remedies is on the rise worldwide, and patients with cancer are increasingly opting to be treated with CAM therapeutic regimens [3,4,5]. The detail mechanistic studies affirming the anticancer effect of calcarea carbonica are still inadequate

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.