Abstract
Ca(2+) binding proteins (CaBPs), calbindin-D(28k) (calbindin) and calretinin, are thought to contribute to the regulation of intracellular Ca(2+) in many neuronal populations and perhaps more importantly, signal functional modulation in neuronal activity. In the present experiments, light microscopic immunohistochemistry revealed that the immunoreactivity of calbindin and calretinin was contained in varicose axons in the posterior pituitary. The dual labeling study with confocal microscopy demonstrated that calbindin immunoreactivity was present in the terminals of both oxytocin (OXT) and arginine-vasopressin (AVP) neurons. However, calretinin immunoreactivity was exclusively seen in the OXT terminals. Moreover, the dual labeling study showed that most calretinin-positive terminals contained calbindin immunoreactivity, demonstrating the colocalization of calbindin and calretinin in the same OXT nerve terminals. By electron microscopy, calbindin and calretinin immunoreactivities were seen in the neurosecretory axons and nerve terminals. These immunoreactive nerve terminals were seen to contain more clear microvesicles than dense-core neurosecretory granules. This immunoelectron microscopic observation suggests that both calbindin and calretinin localize preferentially in the active zone of the nerve terminals, which usually face the perivascular space around fenestrated capillaries. In spite of similar localization of calbindin and calretinin within the posterior pituitary, Western blot analysis showed some differences between the two CaBPs. Calbindin was present mostly in the soluble fraction with little in the insoluble fraction, but a substantial portion of calretinin was present in both the insoluble and soluble fractions. Moreover, dehydration induced by drinking 2% NaCl solution and deprivation of drinking water increased calretinin levels in the posterior pituitary as compared with control, but the calbindin level was not changed. The present findings demonstrate that calbindin and calretinin colocalize in the active zones of OXT nerve terminals, but only calretinin is upregulated with dehydration, suggesting different physiological role of calbindin and calretinin in the nerve terminals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.