Abstract
AbstractControlling supramolecular systems between different functional forms by utilizing acids/bases as stimuli is a formidable challenge, especially where labile coordination bonds are involved. A pair of acid/base responsive, interconvertible 1,5‐enedione/pyrylium based Pd2L4‐type cages are prepared that exhibit differential guest binding abilities towards disulfonates of varied sizes. A three‐state switch has been achieved, where (i) a weakly coordinating base induced cage‐to‐cage transformation in the first step, (ii) a strongly coordinating base triggered cage disassembly as the second step, and (iii) the third step shows acid(strong) promoted generation of initial cage, thereby completing the cycle. To our surprise, binding of a specific disulfonate guest facilitated cage‐to‐cage transformations by inducing strain on the cage assembly thereby opening the labile pyrylium rings of the cage. Through a competitive guest binding study, we demonstrated the superior guest binding capability of the octacationic pyrylium‐based cage over a similar‐sized tetracationic cage. These results provide a reliable approach to reversibly modulate the guest binding properties of acid/base‐responsive self‐assembled coordination cages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.