Abstract

By employing large-scale high-level EA-EOM-CCSD calculations, we have computed and analyzed the low-lying states of neutral Li@C60. Apart from one state, all states are found to be charge-separated states of the type Li+@C60-. The new state is the first reported non-charge-separated state in endohedral alkali fullerenes. This caged-electron state is analyzed in detail. Arguments are given that in larger highly symmetric endohedral fullerenes the caged-electron state can be the electronic ground state of the system. HF and DFT calculations on Li@C180 indeed find that the caged-electron state is the ground state and that in its equilibrium geometry Li sits at the center of the cage. Applications are mentioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.