Abstract

It is a vital requirement to explore high-efficiency and stable electrocatalysts for oxygen reduction reaction (ORR) to further relieve energy depletion. However, it is a critical challenge to develop low cost and high-quality carbon-based catalysts. Herein, a caffeine chelation-triggered pyrolysis approach was developed to construct graphene-wrapped Fe3C nanoparticles incorporated in hierarchically porous FeNC nanosheets (G-Fe3C/FeNC). The present Fe salt and its content as well as the pyrolysis temperature were carefully investigated in the control groups. The G-Fe3C/FeNC catalyst showed a more positive onset potential (Eonset = 1.09 V) and half-wave potential (E1/2 = 0.88 V) in a 0.1 M KOH solution, which outperformed commercial Pt/C (E1/2 = 0.83 V, Eonset = 0.95 V), showing the excellent catalytic performance for the ORR activity, coupled with remarkable stability (only 0.18 mV negative shift in E1/2 after 2000 cycles). This work provides some valuable insights for developing advanced electrocatalysts for energy storage and conversion related research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.