Abstract

Toxic heavy metal contaminants seriously affect plant growth and human health. Reducing the accumulation of toxic metals by phytoremediation is an effective way to solve this environmental problem. Dianthus spiculifolius Schur is an ornamental plant with strong cold and drought tolerance. Because of its fast growth, well-developed root system, and large accumulation of biomass, D. spiculifolius has potential applications as a heavy metal hyperaccumulator. Therefore, the aim of this study was evaluate the ability of D. spiculifolius and other Dianthus species to remediate heavy metals, with an ultimate goal to identify available genetic resources for toxic metal removal. The cadmium (Cd) and lead (Pb) tolerance and accumulation of six Dianthus species were analyzed comparatively in physiological and biochemical experiments. Compared with the other Dianthus species, D. spiculifolius showed higher tolerance to, and greater accumulation of, Cd and Pb. Second-generation transcriptome analysis indicated that glutathione transferase activity was increased and the glutathione metabolism pathway was enriched with genes encoding antioxidant enzymes (DsGST, DsGST3, DsGSTU10, DsGGCT2-1, and DsIDH-2) that were up-regulated under Cd/Pb treatment by RT-qPCR in D. spiculifolius. When expressed in yeast, DsGST, DsGST3, DsGSTU10 and DsIDH-2 enhanced Cd or Pb tolerance. These results indicate that D. spiculifolius has potential applications as a new ornamental hyperaccumulator plant, and that antioxidant enzymes might be involved in regulating Cd/Pb accumulation and detoxification. The findings of this study reveal some novel genetic resources that can be used to breed new plant varieties that tolerate and accumulate heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.