Abstract

Information on cadmium (Cd) uptake and transport is essential to understand better the physiology of Cd tolerance in plants. In this study, Cd uptake, translocation, and tolerance were investigated in AHA1 (Arabidopsis plasma membrane H(+)-ATPase gene) overexpressed plants. Exposed to 10 µM CdCl(2), AHA1OX showed a higher root elongation, accumulated more Cd, and maintained better integrity of nucleus membrane of root tips in comparison to the control plant (WT), suggesting that AHA1OX was more Cd tolerant than WT. To investigate Cd tolerance mechanism of AHA1OX plants, we measured the activity of plasma membrane H(+)-ATPase and the secretion of citrate. Results indicated that treatment with 10 µM of Cd stimulated the activity of plasma membrane H(+)-ATPase and the secretion of citrate, while 30 µM of Cd inhibited them. AHA1OX had higher activity of H(+)-ATPase and secretion of citrate than WT. Addition of citrate enhanced root-to-shoot translocation of Cd significantly. A higher root-to-shoot Cd translocation was observed in AHA1OX than in WT plants. Treatment with low temperature or metabolic inhibitor (carbonyl cyanide m-chlorophenylhydrazone) inhibited Cd uptake and translocation. The study of Cd forms using sequential extraction indicated that Cd was mainly present as a protein-bound form, and AHA1OX had more water-soluble Cd than WT. Taken together, our results suggested that the Cd tolerance of AHA1OX was associated with its root-to-shoot Cd translocation and secretion of citrate, which converts Cd(2+) into less toxic and more easily transportable forms in plant cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.