Abstract

The present study identified that exposure to 5, 10, and 20µg/L Cd for 48 days reduced growth, increased Cd accumulation and levels of reactive oxygen species (ROS) and lipid peroxidation, and induced ER stress and cellular apoptosis in the liver in a dose-dependent manner. However, the survival rate was not affected by Cd. The increased production of ROS might result from reduced catalase (CAT) and copper/zinc-superoxide dismutase (Cu/Zn-SOD) activities, which might trigger ER stress pathways and subsequently induce apoptotic responses, ultimately leading to growth inhibition. Transcriptomic analyses indicated that the differentially expressed genes (DEGs) involved in metabolic pathways were significantly enriched and dysregulated by Cd, suggesting that metabolic disturbances may contribute to Cd toxicity. However, there were increases in glutathione peroxidase (GPX) activity, protein levels of metallothioneins (MTs) and heat shock protein 70 (HSP70), and mRNA levels of sod1, cat, gpx, mt2, and hsp70. Furthermore, DEGs related to ribosome, protein processing in the ER, and protein export pathways were significantly enriched and up-regulated by Cd. These increases may be compensatory responses following oxidative stress, ER stress, and apoptosis to resist negative effects. Taken together, we demonstrated that environmentally relevant levels of Cd induced adaptive responses with compensatory mechanisms in fish, which may help to maintain fish survival at the cost of growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.