Abstract
Cells sort into regions and groups in part by their selective surface expression of particular classic cadherins during development. In the nervous system, cadherin-based sorting can define axon tracts, restrict axonal and dendritic arbors to particular regions or layers, and may encode certain aspects of synapse specificity. The underlying model has been that afferents and their targets hold in common the expression of a particular cadherin, thereby providing a recognition code of homophilic cadherin binding. However, most neurons express multiple cadherins, and it is not clear whether multiple cadherins all act similarly in shaping neural circuitry. Here we asked how two such cadherins, cadherin-8 and N-cadherin, influence the guidance and differentiation of hippocampal mossy fibers. Using organotypic hippocampal cultures, we find that cadherin-8 regulates mossy fiber fasciculation and targeting, but has little effect on CA3 dendrites. In contrast, N-cadherin regulates mossy fiber fasciculation, but has little impact on axonal growth and targeting. However, N-cadherin is essential for CA3 dendrite arborization. Both cadherins are required for formation of proper numbers of presynaptic terminals. Mechanistically, such differential actions of these two cadherins could, in theory, reflect coupling to distinct intracellular binding partners. However, we find that both cadherins bind beta-catenin in dentate gyrus (DG). This suggests that cadherins may engage different intracellular signaling cascades downstream of beta-catenin, coopt different extracellular binding partners, or target distinct subcellular domains. Together our findings demonstrate that cadherin-8 and N-cadherin are critical for generating the mossy fiber pathway, but that each contributes differentially to afferent and target differentiation, thereby complementing one another in the assembly of a synaptic circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.