Abstract

AbstractReverse engineering is the process of obtaining a geometric CAD model from 3D points acquired by scanning an existing physical model. It is widely used in numerous applications, such as manufacturing, industrial design and jewelry design and reproduction. We argue that for creating editable CAD models meant for manufacturing it is more appropriate to use feature-based constraint-based representations, since they capture design intent. We provide a framework for reverse engineering of small objects and in particular jewelry that combines cross section identification, feature and constraint information exploitation to attain robust, accurate and editable CAD models. First, we extract certain candidate features for describing our point cloud. These features are then reconstructed to describe the solid object. Constraints are automatically detected and maintained. Constraints capture design intent and provide robustness guaranties. Voxel inspired techniques are also employed to describe repeated patte...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.