Abstract
ObjectiveInvestigate attrition simulation using CAD/CAM leucite-reinforced glass-ceramic antagonists on occlusal vs. buccal enamel. MethodsThree dental materials with known wear rates (resin-modified glass-ionomer, micro-filled, and fine particle composites) validated the wear simulator (CAD/CAM glass-ceramic antagonists, 200 cycles, 80 N load, deionised water irrigation, 0.7 mm sliding movement). Following this, human molars were sectioned into paired occlusal and buccal polished samples (n = 8/gp). Exposed 1.5 mm Ø enamel areas were subjected to attritional wear with and without pre-immersion in citric acid (5 min, 0.3%, pH 3.8). Profilometry measured step-height enamel wear and surface microhardness at different depths was calculated using Vickers indentation at 0.1 N and 0.5 N loads. ResultsDental material wear using the CAD/CAM antagonists showed consistency with previous data: mean (SD) resin-modified glass ionomer material loss of 177.77 (16.89) µm vs. 22.15 (1.30) µm fine particle hybrid composite resin wear vs. 13.63 (1.02) µm micro filled composite resin wear (P < 0.001). The coefficient of variation was less than 10%. Following validation, enamel sample wear was significantly increased when attrition was introduced (P < 0.001) independent of buccal vs. occlusal sample location (P < 0.05). Attrition resulted in occlusal wear of 26.1 ± 4.5 µm vs. buccal 26.3 ± 1.2 µm and attrition/erosion resulted in occlusal wear of 26.05 ± 4.46 µm vs. buccal 25.27 ± 1.16 µm. Whereas erosion-alone resulted in occlusal wear of 1.65 ± 0.13 µm and buccal 1.75 ± 0.03 µm. Microhardness testing at different loads revealed significantly greater hardness reductions in occlusal enamel vs. buccal enamel for 0.1 KgF indentations (P < 0.001) whereas in contrast 0.5 KgF indentations showed no differences. SignificanceWear simulation with CAD/CAM glass ceramic antagonists produced consistent wear in dental materials and human enamel, regardless of enamel surface origin. Lighter (0.1 KgF) hardness testing of occlusal vs. buccal origin revealed damage to the mechanical integrity of the superficial worn enamel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.