Abstract

Providing scalable video services in a peer-to-peer (P2P) environment is challenging. Since videos are typically large and require high communication bandwidth for delivery, many peers may be unwilling to cache them in whole to serve others. In this paper, we address two fundamental research problems in providing scalable P2P video services: (1) how a host can find enough video pieces, which may scatter among the whole system, to assemble a complete video; and (2) given a limited buffer size, what part of a video a host should cache and what existing data should be expunged to make necessary space. We address these problems with two new ideas: Cell caching collaboration and Controlled Inverse Proportional (CIP) cache allocation. The Cell concept allows cost-effective caching collaboration in a fully distributed environment and can dramatically reduce video lookup cost. On the other hand, CIP cache allocation challenges the conventional caching wisdom by caching unpopular videos in higher priority. Our approach allows the system to retain many copies of popular videos to avoid creating hot spots and at the same time, prevent unpopular videos from being quickly evicted from the system. We have implemented a Gnutella-like simulation network and use it as a testbed to evaluate the proposed technique. Our extensive study shows convincingly the performance advantage of the new scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.