Abstract

Altered Ca2+ handling has immediate physiological and long-term genomic effects on vascular smooth muscle function. Previously we showed that Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) or store-operated Ca2+ channels (SOCCs) results in phosphorylation of the Ca2+/cAMP response element (CRE)-binding protein in cerebral arteries. Here, oligonucleotide array analysis was used to determine gene transcription profiles resulting from these two Ca2+ entry pathways in human cerebrovascular smooth muscle cell cultures. Results were confirmed and expanded using quantitative RT-PCR, Western blot, and immunofluorescence. A distinct, yet overlapping, set of CRE-regulated genes was induced by VDCC activation using K+ membrane depolarization vs. SOCC activation by thapsigargin (TG). Membrane depolarization selectively induced a sustained increase in early growth response-1 (Egr-1) mRNA and protein, which were inhibited by the VDCC blocker nimodipine and the SOCC inhibitor 2-aminoethoxydiphenylborate (2-APB). TG selectively induced a sustained increase in MAPK phosphatase-1 (MKP-1) mRNA and protein, and these effects were decreased by 2-APB, but not by nimodipine. The physiological agonist ANG II also stimulated expression of Egr-1 and MKP-1. Coadministration of 2-APB prevented expression of Egr-1 and MKP-1, whereas nimodipine blocked only Egr-1 expression. TG and ANG II induced phosphorylation of ERK, which was sensitive to 2-APB and was selectively required for CRE-binding protein phosphorylation. Our findings thus indicate that Ca2+ entry through VDCCs and store-operated Ca2+ entry can differentially regulate CRE-containing genes in vascular smooth muscle and also imply that agonist-induced signals involved in modulation of gene transcription can be controlled by multiple sources of Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.