Abstract
Colonic intramuscular interstitial cells of Cajal (ICC-IM) exhibit spontaneous Ca2+ transients manifesting as stochastic events from multiple firing sites with propagating Ca2+ waves occasionally observed. Firing of Ca2+ transients in ICC-IM is not coordinated with adjacent ICC-IM in a field of view or even with events from other firing sites within a single cell. Ca2+ transients, through activation of Ano1 channels and generation of inward current, cause net depolarization of colonic muscles. Ca2+ transients in ICC-IM rely on Ca2+ release from the endoplasmic reticulum via IP3 receptors, spatial amplification from RyRs and ongoing refilling of ER via the sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase. ICC-IM are sustained by voltage-independent Ca2+ influx via store-operated Ca2+ entry. Some of the properties of Ca2+ in ICC-IM in the colon are similar to the behaviour of ICC located in the deep muscular plexus region of the small intestine, suggesting there are functional similarities between these classes of ICC. A component of the SIP syncytium that regulates smooth muscle excitability in the colon is the intramuscular class of interstitial cells of Cajal (ICC-IM). All classes of ICC (including ICC-IM) express Ca2+ -activated Cl- channels, encoded by Ano1, and rely upon this conductance for physiological functions. Thus, Ca2+ handling in ICC is fundamental to colonic motility. We examined Ca2+ handling mechanisms in ICC-IM of murine proximal colon expressing GCaMP6f in ICC. Several Ca2+ firing sites were detected in each cell. While individual sites displayed rhythmic Ca2+ events, the overall pattern of Ca2+ transients was stochastic. No correlation was found between discrete Ca2+ firing sites in the same cell or in adjacent cells. Ca2+ transients in some cells initiated Ca2+ waves that spread along the cell at ∼100µms-1 . Ca2+ transients were caused by release from intracellular stores, but depended strongly on store-operated Ca2+ entry mechanisms. ICC Ca2+ transient firing regulated the resting membrane potential of colonic tissues as a specific Ano1 antagonist hyperpolarized colonic muscles by ∼10mV. Ca2+ transient firing was independent of membrane potential and not affected by blockade of L- or T-type Ca2+ channels. Mechanisms regulating Ca2+ transients in the proximal colon displayed both similarities to and differences from the intramuscular type of ICC in the small intestine. Similarities and differences in Ca2+ release patterns might determine how ICC respond to neurotransmission in these two regions of the gastrointestinal tract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.