Abstract

BackgroundSynthetic particulate hydroxyapatite (HAP; Ca5(PO4)3(OH)) is used as ingredient in oral care products but its effects on cariogenic biofilms are not clear yet. The primary mode of action of HAP may be acting as a calcium phosphate reservoir when deposited in oral biofilms and release Ca2+ and (hydrogen) phosphate ions upon bacterial acid challenge. The aim of this in vitro study was to test this hypothesis by investigating release of Ca2+ ions and potential buffering effects from HAP upon bacterial acid challenge in planktonic cultures and biofilms of Streptococcus mutans.MethodsPlanktonic cultures of S. mutans were grown in BHI broth with 1% sucrose or with additional 5% HAP or 5% silica for up to 48 h. Separately, biofilms of S. mutans were grown in BHI for 72 h in total. After 24 h of this biofilm culture, either BHI alone or BHI with additional 0.5% HAP or 0.5% silica was added. After 48 h, BHI with 1% sucrose was added to allow bacterial acid formation. Ca2+ release was determined colorimetrically and pH measurements were performed using a pH electrode. For statistical analysis, non-parametrical procedures were applied (n ≥ 10; Mann-Whitney U test; α = 0.05).ResultsRelevant release of Ca2+ was only evident in planktonic cultures or biofilms with HAP but not in both other groups (p ≤ 0.001). In suspended biofilms with HAP, median pH was 4.77 after 72 h and about 0.5 pH units higher as compared to both other groups (4.28 or 4.32, respectively; p ≤ 0.001).ConclusionsUnder the tested conditions, synthetic HAP releases Ca2+ ions upon bacterial acid challenge and may also show some buffering capacity but further studies are needed to investigate whether the concentrations tested here can also be reached clinically in dental biofilms.

Highlights

  • Synthetic particulate hydroxyapatite (HAP; Ca5(PO4)3(OH)) is used as ingredient in oral care products but its effects on cariogenic biofilms are not clear yet

  • Several calcium phosphates have been described as potential caries-preventive agents, e.g. hydroxyapatite (HAP), α−/β-tricalcium phosphate (α-TCP; β-TCP), and amorphous calcium phosphate (ACP) [7, 9, 10], which all differ with regard to their respective composition, crystallinity, molar Ca/P ratio, and solubility

  • In patients exhibiting high plaque scores the primary mode of action of HAP as an oral care agent may be to act as a calcium phosphate reservoir when deposited in oral biofilms, potentially releasing Ca2+ and phosphate ions H2PO4−, HPO42− and PO43− upon bacterial acid challenge and maintaining a state of higher saturation with respect to these ions at the tooth surface [19, 20]

Read more

Summary

Introduction

Synthetic particulate hydroxyapatite (HAP; Ca5(PO4)3(OH)) is used as ingredient in oral care products but its effects on cariogenic biofilms are not clear yet. The primary mode of action of HAP may be acting as a calcium phosphate reservoir when deposited in oral biofilms and release Ca2+ and (hydrogen) phosphate ions upon bacterial acid challenge. In patients exhibiting high plaque scores the primary mode of action of HAP as an oral care agent may be to act as a calcium phosphate reservoir when deposited in oral biofilms, potentially releasing Ca2+ and (hydrogen) phosphate ions H2PO4−, HPO42− and PO43− upon bacterial acid challenge and maintaining a state of higher saturation with respect to these ions at the tooth surface [19, 20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.