Abstract

Dictyostelium cells can move rapidly towards a source of cyclic-AMP (cAMP). This chemoattractant is detected by G-protein-linked receptors, which trigger a signalling cascade including a rapid influx of Ca(2+). We have disrupted an inositol 1,4,5-trisphosphate (InsP(3)) receptor-like gene, iplA, to produce null cells in which Ca(2+) entry in response to chemoattractants is abolished, as is the normal increase in free cytosolic Ca(2+) ([Ca(2+)](c)) that follows chemotactic stimulation. However, the resting [Ca(2+)](c) is similar to wild type. This mutant provides a test for the role of Ca(2+) influx in both chemotaxis and the signalling cascade that controls it. The production of cyclic-GMP and cAMP, and the activation of the MAP kinase, DdERK2, triggered from the cAMP receptor, are little perturbed in the mutant; mobilization of actin into the cytoskeleton also follows similar kinetics to wild type. Mutant cells chemotax efficiently towards cAMP or folic acid and their sensitivity to cAMP is similar to wild type. Finally, they move at similar speeds to wild-type cells, with or without chemoattractant. We conclude that Ca(2+) signalling is not necessary for chemotaxis to cAMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.