Abstract

Mammalian spermatozoa require extracellular Ca2+, some of which must be internalized, to undergo complete capacitation. At a critical threshold, a rise in intracellular Ca2+ will trigger acrosomal exocytosis. We used chlortetracycline (CTC) fluorescence patterns to assess changes in the capacitation state of mouse spermatozoa after incubation under various conditions that would affect their intracellular Ca2+ concentrations. Under standard conditions with 1.80 mmol CaCl2l-1 known to support capacitation within 120 min and subsequent fertilization in vitro, a rise in the number of capacitated, acrosome-intact cells (B pattern) was observed over the first 60 min, followed by a decline. A detectable increase in capacitated, acrosome-reacted cells (AR pattern) coincided with the maximum of B pattern cells and a continued rise was observed over the following 60 min. With incubation in 3.60 mmol Ca2+l-1, the rise in AR cells began at 30 min, suggesting that this treatment accelerates capacitation. Introduction of ionophore A23187 at 15 min to cells in standard Ca2+ produced a similar but even more rapid response, with a maximum in B pattern cells and a noticeable rise in AR cells within 10 min. Thus ionophore-treated cells proceed through capacitation, but do so very quickly. However, ionophore in the presence of 90 mumol Ca2+l-1 could promote transition from the uncapacitated F pattern to the capacitated B pattern, but could not trigger acrosomal exocytosis, indicating that the latter requires high extracellular Ca2+. After preincubation in Ca(2+)-deficient medium, most cells exhibited the uncapacitated F pattern and the introduction of millimolar Ca2+ altered this distribution only slowly, over a period of 50 min. In contrast, preincubation in 90 mumol Ca2+l-1 resulted in a minority of F pattern cells and, within 10 min of millimolar Ca2+ introduction, a significant increase in AR cells was observed.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.