Abstract

Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3−/−) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3−/− and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3−/− mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3−/− mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3−/− mice after IR. Notably, months after IR C3−/− and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.

Highlights

  • Radiotherapy (RT), an effective tool in the treatment of malignant tumors, is used in adult patients and in children suffering from primary or metastatic brain tumors and central nervous system (CNS) involvement of leukemia or lymphoma

  • We investigated the role of the third complement component (C3) in IRinduced impairment of hippocampal growth and learning in young mice

  • Our major findings were that C3 deficiency was associated with (i) higher levels of proinflammatory cytokines during the acute phase, (ii) higher numbers of microglia and a trend towards higher cell proliferation in the granule cell layer (GCL) during the subacute phase, and (iii) better learning capacity after IR

Read more

Summary

Introduction

Radiotherapy (RT), an effective tool in the treatment of malignant tumors, is used in adult patients and in children suffering from primary or metastatic brain tumors and central nervous system (CNS) involvement of leukemia or lymphoma. Radiation virtually abolished neurogenesis in both neurogenic niches in the acute phase, the long-term effects were profoundly different such that the IR effects on the DG were long-lasting, whereas SVZ neurogenesis appeared to recover with time [12]. These findings point to substantial differences between the immature and adult brain in the response to IR, something that we have shown already [15], as well as differences in the ability of the neurogenic regions to recover from the IR-induced damage. It has been shown that IR causes a change in the microenvironment, making the progenitor cells in the DG shift from neurogenesis to gliogenesis, and this was attributed to the inflammatory response [16]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.