Abstract
The collagen-tailed form of acetylcholinesterase (A(12)-AChE) appears to be localized at the neuromuscular junction in association with the transmembrane dystroglycan complex through binding of its collagenic tail (ColQ) to the proteoglycan perlecan. The heparan sulfate binding domains (HSBD) of ColQ are thought to be involved in anchoring ColQ to the synaptic basal lamina. The C-terminal domain (CTD) of ColQ is also likely involved, but there has been no direct evidence. Mutations in COLQ cause endplate AChE deficiency in humans. Nine previously reported and three novel mutations are in CTD of ColQ, and most CTD mutations do not abrogate formation of A(12)-AChE in transfected COS cells. Patient endplates, however, are devoid of AChE, suggesting that CTD mutations affect anchoring of ColQ to the synaptic basal lamina. Based on our observations that purified AChE can be transplanted to the heterologous frog neuromuscular junction, we tested insertion competence of nine naturally occurring CTD mutants and two artificial HSBD mutants. Wild-type human A(12)-AChE inserted into the frog neuromuscular junction, whereas six CTD mutants and two HSBD mutants did not. Our studies establish that the CTD mutations indeed compromise anchoring of ColQ and that both HSBD and CTD are essential for anchoring ColQ to the synaptic basal lamina.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.