Abstract

AbstractTheoretically, metal Sn owns higher initial coulombic efficiency than SnO2 in the sodium‐ion batteries (SIBs). Metal Sn is commonly obtained by the thermal reduction of SnO2 at present. However, the uncontrollable growth of metal Sn particles during the reduction progress is a key challenge. In this work, a composite material of refined metal Sn particles (particle size about 20∼200 nm) and carbon buffer medium has been prepared by a novel method, which is simple thermal reduction adopted after the treatment of SnO2/RGO in the pitch kerosene solution. The results show that this method overcomes the uncontrollable growth of metal Sn particles. Electrochemical tests show that C/Sn/RGO possesses a higher initial reversible capacity of 476.2 mAh g−1, and a higher initial coulombic efficiency of 70.3%. This method would have wider applications for the attractive properties of Na‐ion batteries in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.