Abstract
Aims C-peptide is a product of pro-insulin cleavage. Numerous studies have demonstrated that C-peptide, although not influencing blood glucose control, may play a role in preventing and potentially reversing some of the chronic complications of type 1 diabetes. The aim of this paper was to present a novel function of C-peptide, focusing on its role in nitric oxide (NO) generation. Main methods Murine macrophage Raw264.7 cells and primary peritoneal macrophages were incubated under control conditions, or with C-peptide. Expression level of iNOS and phosphorylation status of JAK2/STAT1 were analyzed by Western blot. Fluorometric NO assay kit was used to assess the concentration of nitrite in culture medium. Intracellular calcium concentration was measured with calcium indicator dyes, such as Fura-2 and Fluo-3 AM. Key findings C-peptide increased the level of nitrites in murine macrophage Raw264.7 cells. The nitrites production induced by lipopolysaccharide (LPS) was further enhanced by co-treatment of C-peptide. This up-regulation of nitrites generation also correlated with the induction of inducible nitric oxide synthase (iNOS), a prominent marker of macrophage activation. In addition, C-peptide increased the intracellular concentration of calcium levels. Moreover, C-peptide-induced nitrites generation and increase in calcium was observed in freshly isolated primary peritoneal macrophages. In addition, C-peptide specifically affected the Janus activated kinase (JAK)/signal transducer and activated transcription (STAT) pathway. Finally, C-peptide-mediated nitrites generation and JAK2/STAT1 phosphorylation were not detected in the presence of the intracellular calcium chelator, BAPTA-AM. Significance These results suggest that C-peptide may elicit immune modulatory function via modulation of the calcium/JAK–STAT pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.