Abstract

The transcription factor orthodenticle homeobox 2 (OTX2) has critical functions in brain and eye development, and its mutations in humans are related to retinal diseases, such as ocular coloboma and microphthalmia. However, the regulatory mechanisms of OTX2 are poorly identified. The identification of JNK1 as an OTX2 regulatory protein through the protein interaction and phosphorylation. To identify the binding partner of OTX2, we performed co-immunoprecipitation and detected with a pooled antibody that targeted effective kinases. The protein interaction between JNK1 and OTX2 was identified with the co-immunoprecipitation and immunocytochemistry. In vivo and in vitro kinase assay of JNK1 was performed to detect the phosphorylation of OTX2 by JNK1. JNK1 directly interacted with OTX2 through the transactivation domain at the c-terminal region. The protein-protein interaction and co-localization between JNK1 and OTX2 were further validated in the developing P0 mouse retina. In addition, we confirmed that the inactivation of JNK1 K55N mutant significantly reduced the JNK1-mediated phosphorylation of OTX2 by performing an immune complex protein kinase assay. c-Jun N-terminal kinase 1 (JNK1) phosphorylates OTX2 transcription factor through the protein-protein interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.