Abstract

The transition-metal-catalyzed C-H arylation of aromatic hydrocarbons represents a useful and ideal method for the production of biaryls and multiarylated aromatic compounds. We have previously reported the palladium-catalyzed direct C-H arylation of polycyclic aromatic hydrocarbons, such as phenanthrene, pyrene, and corannulene with various organosilicon, -borane, and -germanium compounds. In these reactions, o-chloranil proved to be an essential and unique promoter (stoichiometrically as an oxidant) and arylation occurred exclusively at the K-region. Herein, we report our mechanistic investigation of Pd/o-chloranil catalysis in C-H arylation of phenanthrene with trimethylphenylsilane by computational calculations. The results revealed that C-H arylation occurs through a sequence of transmetalation, carbometalation, and trans-β-hydrogen elimination steps. In addition, the triple role of o-chloranil as a ligand, oxidant, and base is also elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.