Abstract

Searching for regions of the input space where a statistical model is inappropriate is useful in many applications. The study proposes an algorithm for finding local departures from a regression-type prediction model. The algorithm returns low-dimensional hypercubes where the average prediction error clearly departs from zero. The study describes the developed algorithm, and shows successful applications on the simulated and real data from the steel plate production. The algorithms that have been originally developed for searching regions of the high-response value from the input space are reviewed and considered as alternative methods for locating model departures. The proposed algorithm succeeds in locating the model departure regions better than the compared alternatives. The algorithm can be utilized in sequential follow-up of a model as time goes along and new data are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.