Abstract

With the acceleration of urbanization, urban bus scheduling systems are facing unprecedented challenges. Traditional bus scheduling provides the original schedule time and the planned time of arrival at the destination, where the schedule time is the departure time of the bus. However, various factors encountered during the drive result in significant differences in the driving time of the bus. To ensure timely arrivals, the bus scheduling system has to rely on manual adjustments to optimize the schedule time to determine the actual departure time. In order to reduce the scheduling cost and align the schedule time closer to the actual departure time, this paper proposes a dynamic scheduling model, LSTM-SVR, which leverages the advantages of LSTM in capturing the time series features and the ability of SVR in dealing with nonlinear problems, especially its generalization ability in small datasets. Firstly, LSTM is used to efficiently capture features of multidimensional time series data and convert them into one-dimensional effective feature outputs. Secondly, SVR is used to train the nonlinear relationship between these one-dimensional features and the target variables. Thirdly, the one-dimensional time series features extracted from the test set are put into the generated nonlinear model for prediction to obtain the predicted schedule time. Finally, we validate the model using real data from an urban bus scheduling system. The experimental results show that the proposed hybrid LSTM-SVR model outperforms LSTM-BOA, SVR-BOA, and BiLSTM-SOA models in the accuracy of predicting bus schedule time, thus confirming the effectiveness and superior prediction performance of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.