Abstract

To minimize disruptions of economic and social activities on the ground surface in urban areas, trenchless techniques such as pipe bursting are often considered for underground pipeline construction, rehabilitation, and renewal of existing utility services. Pipe bursting, however, inevitably induces outward displacements of surrounding soil, and subsequently leads to potential damages to adjacent structures and utilities. This paper carries out finite element (FE) analyses to investigate effects of the static pipe bursting–induced ground displacements on adjacent pipelines. In total 760 FE parametric studies are performed to encompass various combinations of ground settlement profiles, pipe dimensions, material properties, and soil properties that are typical of utility pipelines and pipe bursting in urban areas. The FE parametric results are summarized in a dimensionless plot of relative pipe–soil stiffness versus ratio of maximum pipe curvature to maximum ground curvature, which can be used to directly estimate the maximum pipe bending strain and (or) directly evaluate pipeline responses to adjacent pipe bursting. A worked example is provided to illustrate usage of the dimensionless plot. It is further found that the pipe–soil interaction is similar for pipe bursting and tunneling, and the effects of both pipe bursting and tunneling on adjacent pipelines can be assessed using a unified dimensionless plot. Effects of the intersection angle between the pipe bursting centerline and adjacent pipeline are explored. The pipe responses are shown to be underestimated or unconservative when only the perpendicular case is considered in the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.