Abstract
Loop diuretic-sensitive NaCl(K) cotransport plays a fundamental role in absorption and secretion of electrolytes in epithelial tissues. Cotransport activity was measured as uptake of 22Na, 36Cl, or 86Rb at 27 degrees C in isolated rabbit tracheal epithelial cells. Uptake of radiotracer was linear from 1 to 2 min after initiation of radiotracer transport. Bumetanide at 10 microM final concentration did not affect tracer uptake. The endogenous catecholamine l-epinephrine and alpha 2-adrenergic agent clonidine increased sodium and chloride uptake at least 5.5-fold. Bumetanide blocked sodium uptake by 85% and chloride uptake by 72%. 86Rb uptake was not affected by l-epinephrine, clonidine, or bumetanide. The alpha 2-adrenergic antagonist yohimbine blocked the effects of l-epinephrine and clonidine on 22Na and 36Cl uptake. In Ca(2+)-depleted transport medium, baseline levels of sodium and chloride uptake increased 3.8- and 2.4-fold, respectively, in a bumetanide-independent manner. Nevertheless, l-epinephrine and clonidine induced a net stimulation of sodium and chloride uptake similar to that found in Ca(2+)-replete medium. This response was reduced by bumetanide and yohimbine. The Ca(2+)-elevating agent ionomycin increased bumetanide-sensitive sodium and chloride uptake 7.2- and 6.2-fold, respectively. Replacement of chloride with gluconate or sodium with N-methyl-D-glucamine in the extracellular medium inhibited l-epinephrine and clonidine-stimulated bumetanide-sensitive sodium and chloride uptake, respectively. Osmotic shrinkage in hyperosmotic (500 mM NaCl with all other electrolytes at normal concentration) transport medium markedly increased bumetanide-inhibitable sodium and chloride uptake.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.