Abstract
A hollow cathode maskless plasma etching method for fabrication of thin quartz membranes is presented. A special geometric arrangement of electrodes and substrates allows the complete plasma structure (plasma sheath, bulk plasma) to be transferred to the substrate area during the etching process. The process has successfully been used in preparing thin quartz membranes with plane-convex and plane-parallel shape, and thicknesses of less than 5 mum. Vibration modes in these thin quartz membranes are calculated using the method of equivalent resonant radius. The membranes are used for realization of bulk acoustic wave resonators at fundamental frequencies above 60 MHz. Good agreement between theoretical and experimental characteristics is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.