Abstract

In this paper, a built-in self-test (BIST) procedure is proposed for testing and fault tolerance of molecular electronics-based nanofabrics. The nanofabrics are assumed to include up to 1012 devices/cm2; this requires new test strategies that can efficiently test and diagnose the nanofabrics in a reasonable time. Our BIST procedure utilizes nanofabric components as small test groups containing test pattern generator and response analyzer. Small test groups (fine-grained test) result in higher diagnosability and recovery. The proposed technique applies the test in parallel with a low number of test configurations resulting in a manageable test time. Due to high defect density of nanofabrics, an efficient diagnosis procedure is done after BIST procedure to achieve high recovery. This is called recovery-increase procedure, and this increases the available number of fault-free components detected in a nanochip. Finally, a defect database called defect map is created to be used by compilers during the configuration of the nanofabrics to avoid defective components. This results in a reliable system constructed from unreliable components. Our simulation results demonstrate the effectiveness of the proposed BIST and recovery-increase procedures

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.