Abstract

We propose a self-test method for zero-IF radio frequency transceivers using primarily loopback, aided by a small built-in self-test (BIST) circuitry, to determine critical performance parameters, such as I/Q imbalance and nonlinearity coefficients. The transceiver is placed in the loopback mode by couplers, specifically designed to be asymmetric with respect to the primary path and the BIST path. The loopback path is also designed to include two traces with slightly different delays to enable parameter deembedding. Transceiver parameters are analytically computed using baseband I and Q signals over two frames, each of which is 200 μs in duration. Overall, measurement time is <;10 ms, including computation time. In addition to loopback hardware support and the associated parameter deembedding methodology, we propose a complimentary BIST circuit to measure the transmitter (TX) gain. The measured parameters can be used for predistortion or postdistortion to calibrate the transceiver, both at production time and in the field. Both simulation and hardware measurement results show that the proposed method can determine the target performance parameters with adequate accuracy for digital calibration. Measurement and the subsequent calibration are shown to reduce TX error vector magnitude more than fivefold, even for significantly impaired systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.