Abstract
Monocrystal Sn nanorods encapsulated in the multi-walled carbon nanotubes (Sn@CNT NRs), were fabricated by a facile arc-discharge plasma process, using bulk Sn as the raw target and methane as the gaseous carbon source. The typical Sn@CNT NRs are 40–90 nm in diameter and 400–500 nm in length. The CNTs protect the inner Sn nanorods from oxidation. Temperature dependent I–V curve and electronic resistance reveal that the dielectric behavior of Sn@CNT NRs is attributed to the multi-wall CNTs shell and follows Mott-David variable range hopping [lnR(T)∝T−1/4] model above the superconducting critical temperature of 3.69 K, with semiconductor–superconductor transition (SST). Josephson junction of Sn/CNT/Sn layered structure is responsible for the superconducting behavior of Sn@CNT NRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.