Abstract

Well-dispersed uniform CoFe2O4 nanoparticles were prepared and then coated by MgO through thermal decomposition of a metal–organic salt in organic solvent. Then CoFe2O4/MgO were reduced in a H2/N2 mixture gas and subsequently oxidized in an ambient atmosphere in order to build CoFe2/CoFe2O4/MgO architectures with high magnetization, good chemical stability and dispersivity, which are useful in some practical applications. MgO can be dissolved by the HCl solution. The surfaces of CoFe2O4, CoFe2/MgO, CoFe2 and CoFe2/CoFe2O4 magnetic particles were functionalized by TiO2 to prepare the magnetically separable photocatalysts. The rattle-type particles were obtained without the assistance of template and etchant. The photocatalytic activity of these photocatalysts in degradation of methylene blue and the magnetic separability were investigated: The nanosheet-shaped TiO2 and rattle-type particles exhibited good photocatalytic performance; The highest degradation efficiency reaches 93% for the CoFe2/TiO2 sample which has the highest magnetization value of 42emu/g, beneficial for the recovery of catalyst after degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.