Abstract
Abstract. Detection of Building edges is crucial for building information extraction and description. Extracting structures from large-scale aerial images has been utilized for years in cartography. With commercially available high-resolution satellites, many aerial photography usages can now employ satellite imagery. Edge detection is focused on pinpointing distinct transitions between greyscale image regions and attributing their origins to underlying physical processes. Detecting building boundaries from very high-resolution (VHR) remote sensing data is essential for many geo-related applications, such as urban planning and management, surveying and mapping, 3D reconstruction, motion recognition, image registration, image enhancement and restoration, image compression, and more. The rapid evolution of convolutional neural networks (CNNs) has led to substantial breakthroughs in edge detection in recent years. Sharp, localized changes in brightness characterize edges in digital images. In most cases, edge detection requires some kind of image smoothing and separation. Differentiation is an ill-conditioned problem, and smoothing leads to information loss. It is challenging to create an edge detection method that works everywhere and adapts to any future processing stages. Therefore, throughout the development of digital image processing, numerous edge detectors have been created, each with its own unique set of mathematical and algorithmic properties. Several edge detectors have been developed due to application needs and the subjective nature of edge definition and characterization. We propose a deep learning technique, particularly convolutional neural networks(CNNs), that offers a promising approach to automatically learn and extract features from very high-resolution remote sensing imagery, leading to more accurate and efficient building edge detection.
Full Text
Topics from this Paper
Edge Detection
Very High-resolution
Edges In Digital Images
Large-scale Aerial Images
Convolutional Neural Networks
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Remote Sensing
Sep 24, 2021
International Journal of Remote Sensing
Sep 17, 2018
Jul 10, 2017
Remote Sensing
Jun 4, 2019
GIScience & Remote Sensing
Sep 1, 2012
Biosciences Biotechnology Research Asia
Dec 28, 2014
Research in Computing Science
Dec 31, 2015
Remote Sensing
May 29, 2019
Sensors
Mar 7, 2019
Applied and Computational Engineering
Mar 22, 2023
Journal of Applied Remote Sensing
Jan 17, 2020
Cognitive Systems Research
Dec 1, 2019
Molecular Therapy - Nucleic Acids
Jun 1, 2021
Mar 4, 2016
Journal of Applied Remote Sensing
Mar 4, 2021
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023