Abstract
Quadratic classifier with modified quadratic discriminant function (MQDF) has been successfully applied to recognition of handwritten characters to achieve very good performance. However, for large category classification problem such as Chinese character recognition, the storage of the parameters for the MQDF classifier is usually too large to make it practical to be embedded in the memory limited hand-held devices. In this paper, we aim at building a compact and high accuracy MQDF classifier for these embedded systems. A method by combining linear discriminant analysis and subspace distribution sharing is proposed to greatly compress the storage of the MQDF classifier from 76.4 to 2.06 MB, while the recognition accuracy still remains above 97%, with only 0.88% accuracy loss. Furthermore, a two-level minimum distance classifier is employed to accelerate the recognition process. Fast recognition speed and compact dictionary size make the high accuracy quadratic classifier become practical for hand-held devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.