Abstract
Classical polygraph screenings are routinely used by critical businesses such as banking, law enforcement agencies, and federal governments. A major concern of scientific communities is that screenings are prone to errors. However, screening errors are not only due to the method, but also due to human (polygraph examiner) error. Here we show application of machine learning (ML) to detect examiner errors. From an ML perspective, we trained an error detection model in the absence of labeled errors. From a practical perspective, we devised and tested successfully a second-opinion tool to find human errors in examiners’ conclusions, thus reducing subjectivity of polygraph screenings. We report novel features that uplift the model’s accuracy, and experimental results on whether people lie differently on different topics. We anticipate our results to be a step towards rethinking classical polygraph practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.