Abstract

AbstractCryptographic hash functions are important cryptographic techniques and are used widely in many cryptographic applications and protocols. All the MD4 design based hash functions such as MD5, SHA-1, RIPEMD-160 and FORK-256 are built on Merkle-Damgård iterative method. Recent differential and generic attacks against these popular hash functions have shown weaknesses of both specific hash functions and their underlying Merkle-Damgård construction. In this paper we propose a hash function follows design principle of NewFORK-256 and based on HAIFA construction. Its compression function takes three inputs and generates a single output of 256-bit length. An extra input to a compression function is a 64-bit counter (number of bits hashed so far). HAIFA construction shows strong resistance against major generic and other cryptanalytic attacks. The security of proposed hash function against generic attacks, differential attack, birthday attack and statistical attack was analyzed in detail. It is shown that the proposed hash function has high sensitivity to an input message and is secure against different cryptanalytic attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.