Abstract
The aim of this work was to develop an antibacterial multilayer coating activated with methylene blue (MB) and based on chitosan (CHT) and cyclodextrin polyelectrolyte (polyCD) onto a non-woven polyethylene terephthalate (PET) textile support. The MB-free and MB-loaded systems were built-up by applying the dip-coating technique, alternating soak cycles of the PET textile preliminarily modified with carboxylate groups in CHT and in polyCD or polyCD/MB complex solutions. The layer-by-layer assembly build-up was followed by optical waveguide lightmode spectroscopy on the one hand and by gravimetry once it was applied on the textile substrate on the other hand. Two chitosan grades were used, low molecular weight (CHT-L) and medium molecular weight (CHT-M). The influence of the molar ratio CD/MB in the polyCD solutions was varied and finally the system underwent a post reticulation with genipin. Such parameters influences were investigated with regard to the loading capacity in MB of the systems, the release kinetics profiles of MB in pure water, phosphate buffer and MEM media, and the degradation of the self-assembled coating in the same media. Finally, biological and microbiological tests were performed to demonstrate the cytocompatibility of the systems and their ability to display a sustained antibacterial effect of the device through the MB prolonged release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.