Abstract

In this paper, we present the initial buckling and post-buckling responses of axial loaded advanced grid stiffened (AGS) composite cylindrical shells with reinforced rectangular or circular cutouts. The AGS cylindrical shells were reinforced by various local grid configurations near the cutout areas. The effects of different reinforcing grid configurations on critical loads were then examined and compared to those of different skin-reinforcing designs using Finite Element Analysis (FEA) simulations. A high-fidelity non-linear analysis procedure was proposed to predict the non-linear buckling response of the shell structures. The simulation results indicated that the grid reinforcements can reduce or eliminate the risk of local buckling response near the cutout areas and increase the critical load of the shell more effectively than the skin reinforcements. Furthermore, those results showed that an optimum grid reinforcement configuration exists, which significantly improved the initial buckling and post-buckling resistance of the cylindrical shells under axial loading. The above findings can potentially be useful to the analysis and optimum design of AGS composite cylindrical shells with cutouts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.