Abstract

Buckling behavior of rectangular functionally graded plates with geometrical imperfections is studied in this paper. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate are derived using the classical plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate, graded through thickness, are described by a power function of the thickness variable. The plate is assumed to be under in-plane compressive loading. Simultaneous solving of the stability and compatibility equations in conjunction with the equilibrium equations leads to the buckling relation of the plate. The critical buckling load of a sample plate is obtained and compared for different geometrical ratios. The results are reduced and compared with the results of perfect functionally graded and imperfect isotropic plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.