Abstract

Introduction. The creation of new types of bucket working bodies of excavators through synthesizing technical solutions to improve the transporting functions of the bottom is considered. These solutions are based on reducing the resistance and energy consumption under digging-in and scooping due to the transition from sliding friction to rolling friction during the movement of the rock mass along the bottom of the bucket. Materials and Methods. Analysis of the bulk materials handling processes using existing loading appliances identified design flaws that affect the efficiency of their operation. Advanced design diagrams of loading bodies were searched on the basis of the accumulated experience and the study of the morphological features of the existing equipment. Combinatorial analysis of possible combinations of elements with their various qualitative compositions, mutual arrangement, imposed links, and synthesis of new technical solutions for loading and transportation modules are carried out. Results. The results of the morphological synthesis implementation were the systematization and development of designs of bucket working bodies with a bottom in the form of a roller surface and a closed belt, as well as with a conveyor-type drive mechanism. The application of rollers as a supporting surface of a loaded rock mass causes a decrease in friction forces and in the power capacity of the work process. In addition, rotating rollers provide uniform abrasion of the working surface, which increases significantly the time to the equipment breakdown and increases the process efficiency. Working bodies with a drive mechanism make it possible to activate the interaction of the conveyor bottom in the form of a closed belt with the rock mass and, as a result, to accelerate the process of filling the bucket container. Discussion and Conclusions. The bucket working bodies described in the paper compare favorably with existing analogues in that they provide a reduction in the time to digging-in, scooping and unloading, a decrease in specific energy consumption, an increase in bucket filling, which ultimately contributes to an increase in productivity. A slight increase in the structural complexity and cost of the working body causes additional capital costs, which are paid back within two to four months.

Highlights

  • The creation of new types of bucket working bodies of excavators through synthesizing technical solutions to improve the transporting functions of the bottom is considered. These solutions are based on reducing the resistance and energy consumption under digging-in and scooping due to the transition from sliding friction to rolling friction during the movement of the rock mass along the bottom of the bucket

  • The application of rollers as a supporting surface of a loaded rock mass causes a decrease in friction forces and in the power capacity of the work process

  • Working bodies with a drive mechanism make it possible to activate the interaction of the conveyor bottom in the form of a closed belt with the rock mass and, as a result, to accelerate the process of filling the bucket container

Read more

Summary

MACHINE BUILDING AND M ACHI NE SCI E NCE

Ковшовые рабочие органы с конвейерным днищем: систематика и конструктивные особенности. Результатами реализации морфологического синтеза явились систематизация и разработка конструкций ковшовых рабочих органов с днищем в виде роликовой поверхности и замкнутой ленты, а также с приводным механизмом конвейерного типа. Рабочие органы с приводным механизмом позволяют активизировать взаимодействие днища конвейера в виде замкнутой ленты с горной массой и, как следствие, ускорить процесс заполнения емкости ковша. Описанные в работе, выгодно отличаются от существующих аналогов тем, что они обеспечивают сокращение времени внедрения, черпания и выгрузки, снижение удельной энергоемкости, увеличение наполнения ковша, что, в конечном счете, способствует повышению производительности. Ключевые слова: ковшовые рабочие органы, процесс погрузки, операции рабочего цикла, выемочнопогрузочные машины, конвейерное днище, роликовая поверхность, механическая передача, гидроцилиндр, шток гидроцилиндра, трение. 1,3 Shakhty Institute, Branch of Platov South-Russian State Polytechnic University (NPI) (Shakhty, Russian Federation) 2 Don State Technical University (Rostov-on-Don, Russian Federation)

Introduction
Машиностроение и машиноведение
Ковшовый рабочий орган с конвейерным днищем в виде роликовой поверхности

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.