Abstract

Subcooled pool boiling of water was conducted in reduced gravity performed by a parabolic flight of aircraft and a drop‐shaft facility. A small stainless steel plate was physically burned out in the subcooled water by AC electric power during the parabolic flight. Boiling bubbles grew with increasing heating power but did not detached from the heating surface. The burnout heat fluxes obtained were 200 ∼ 400 percent higher than the existing theories. In the ground experiment, boiling bubbles were attached to the heating surface with a flat plate placed over the heating surface, and the experiment was performed by the same heating procedure as practiced under the reduced gravity. Same burnout heat fluxes as under the reduced gravity were obtained by adjusting the plate clearance to the heating surface. As the heating time extended longer than the reduced gravity duration, the burnout heat fluxes decreased gradually and became constant. Contact area of bubbles with heating surface was observed using a transparent heating surface in microgravity performed by a drop‐shaft facility. The contact area of bubbles increased significantly at the start of microgravity. It is suggested by the experimental results that the boiling bubbles expand rapidly in the high heat flux region and the rapid evaporation of liquid layer remained between the bubbles and the heating surface raises up the critical heat flux higher than the existing theories in microgravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.