Abstract

Nucleate pool boiling on micro-pin-finned surface structure is proposed for efficiently cooling electronic components with high heat flux in microgravity, and was verified by experiments performed utilizing the drop tower Beijing. Micro-pin-fins with the dimensions of 50 × 60 μm2 (thickness × height) and the space of 50 μm were fabricated on the chip surface by the dry etching technique. FC-72 was used as the working fluid. Nucleate pool boiling of FC-72 on a smooth surface was also tested for comparison. Unlike much obvious deterioration of heat transfer of nucleate pool boiling on the smooth surface in microgravity, constant heater surface temperature of nucleate pool boiling for the micro-pin-finned surface was observed, even though a large coalesced bubble completely covered the surface under microgravity condition. The performance of high efficient heat transfer on micro-pin-finned surface is independent of the gravity, which stems from the sufficient supply of fresh liquid to the heater surface due to the capillary forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.