Abstract

We first consider the dynamics of a class of meromorphic skew products having superattracting fixed points or fixed indeterminacy points at the origin. Our theorem asserts that, if a map has a suitable weight, then it is conjugate to the associated monomial map on an invariant open set whose closure contains the origin. We next extend this result to a wider class of meromorphic maps such that the eigenvalues of the associated matrices are real and greater than $1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.