Abstract

Millimeter wave (mmWave) techniques have attracted much attention in recent years owing to features such as substantial bandwidth for communication, and it has applications in radar systems and location applications. To compensate for the severe path loss in mmWave bands, beamforming techniques with a massive antenna array are usually employed to provide high directivity. However, the resulting high-gain and narrow pencil beam make the beam alignment costlier and much more difficult. Hence, conducting beam alignment with a low overhead becomes critical. Herein, we propose a promising solution that does not require channel knowledge and treats the beam selection as an image reconstruction problem; thus, deep neural networks can be employed to operate the beam domain image reconstruction. This approach can be divided into two stages: off-line training and on- line prediction. The overhead of the on-line beam selection can be significantly reduced via off- line Eigen-beam extraction without degrading the beamforming performance. Simulations are conducted to confirm the performance of the proposed framework in scalability and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.